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CONSTRUCTED QUATERNARY CRYPTOGRAPHIC

FUNCTIONS CLASS

ZOUBIDA JADDA and PATRICE PARRAUD

Abstract. New results on quaternary (Z4 = {0, 1, 2, 3}-valued) cryptographic func-

tions are presented. We define and characterize completely the Z4-balancedness and

the Z4-nonlinearity according to the Hamming metric and the Lee metric. In the
particular case of quaternary Bent functions we show that the maximal nonlinearity

of these functions is bounded for the Hamming metric and we give the exact value

of the maximal nonlinearity of these functions for the Lee metric. A general con-
struction, based on Galois ring, is related in detail and applied to obtain a class of

balanced and high nonlinearity quaternary cryptographic functions. We use Gray

map to derive these constructed quaternary functions to obtain balanced Boolean
functions having high nonlinearity.

1. Introduction

Boolean ({0, 1}-valued) functions of length n used in pseudo-random generators of
stream and block ciphers play an important role in their security ([7, 1]). These
functions are usually studied over finite field of two elements F2. Finding Boolean
functions with optimal cryptographic properties as balancedness and high nonlin-
earity is still an open problem. The purpose of this paper is to present new results
on quaternary ({0, 1, 2, 3}-valued) cryptographic functions. This work is moti-
vated by the interest in studying quaternary objects and structures (see [8, 12]).
The usual metric used in Z4 is the Lee metric which allows to have an isometry
from (Zm4 , Lee distance) to (F2m

2 , Hamming distance) with the Gray map. We
begin by defining and characterizing exactly quaternary cryptographic functions
of length m. Then, we formally describe balancedness and nonlinearity over Z4

according to the Hamming metric and the Lee metric. Quaternary Bent functions
[19] (or more generaly q-ary Bent functions [3, 9, 10, 11]) are defined by Walsh
transform. For m-variables quaternary Bent functions we prove that the maximal
nonlinearity is bounded between 3 · 4m−1 − 2m−1 and 3 · 4m−1 − 2m−2 under the
Hamming metric and we give conditions to reach the upper bound. We show that
the exact value of the maximal nonlinearity of these functions under the Lee met-
ric is 4m−1− 2m+1. A general construction of quaternary cryptographic functions
is detailed, using cyclotomic classes of the multiplicative group of a Galois ring R.
We point out the fact that the balancedness and the nonlinearity of the obtained
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functions depend on the b-polynomial used to construct R and on the distribu-
tion of these classes over R. We naturally apply this construction to a particular
configuration in order to obtain a class of m-variables quaternary cryptographic
functions which are balanced and have nonlinearity bounded between 3 ·4m−1−2m

and 3 · 4m−1 − 2m−1 for the Hamming metric and bounded between 4m − 2m+1

and 4m − 2m for the Lee metric. Using the Gray map with these obtained qua-
ternary functions we present 2m−variables balanced Boolean functions with high
nonlinearity. To avoid any confusion, an n-variables Boolean function is denoted
by f while an m-variables quaternary function is denoted by F .

2. Boolean Functions Basics

Let n be a natural integer and Fn2 the set of all n-tuples of elements in the
finite field F2 = {0, 1} with its sum denoted by ⊕. An n-variables Boolean
function f is a function from Fn2 to F2 which can be identified by its truth ta-
ble [f(0, · · · , 0), · · · , f(1, · · · , 1)] of length 2n. The support of f is defined by
supp(f) = {u ∈ Fn2 | f(u) 6= 0} and the Hamming weight wH(f) of f by the
size of its support. The Hamming distance between two n-variables Boolean
functions f and g is dH(f, g) = wH(f ⊕ g) where ⊕ denotes the addition in
F2. The Walsh transform of an n-variables Boolean function f is the complex
mapping from Fn2 to C defined by Wf (u) =

∑
v∈Fn

2
(−1)u·v+f(v) where u · v de-

notes the usual inner product in Fn2 . An n-variables Boolean function f is bal-
anced if its truth table contains an equal number of 1’s and 0’s which means
that wH(f) = 2n−1 or in spectral term Wf (0) = 0. The nonlinearity of a
n-variables Boolean function f is the minimum distance to all affine functions
nl2(f) = min

g affine
dH(f, g). Using the Walsh transform, the nonlinearity of f can be

expressed by nl2(f) = 2n−1− 1
2 max
a∈Fn

2

|Wf (a)|. Readers can read [5, 6, 16] for more

detailed explanations of Boolean functions cryptographic criteria. For every n-
variables Boolean function f , we have nl2(f) ≤ 2n−1−2

n
2−1. This bound is reached

for Bent functions [17, 14] which are characterised by ∀u ∈ Fn2 , |Wf (u)| = 2
n
2

for n even. A Bent function could not be balanced. Finding maximal nonlinearity
Boolean functions (see [13, 15, 18]) is an open problem.

3. Quaternary Cryptographic Functions

3.1. Quaternary Tools

Throughout this section, i will denote the complex number such that i2 = −1.
Let Z4 = Z/4Z = {0, 1, 2, 3} be the ring of integers modulo 4 which is group-
isomorphic to U4 = {±1,±i} the group of 4th root of unity in C under the standard
isomorphism x→ ix. Zm4 will represent the set of all m−tuples of elements in Z4

where m is a natural integer. The addition on Z4 ( addition (mod 4)) will be
denoted by +. The Lee weights wL of 0, 1, 2, 3 in Z4 are 0, 1, 2, 1 respectively and
the Lee weight wL(u) of an element u of Zm4 is the rational sum of the Lee weight
of its components. The Lee distance dL(u, v) between two elements u and v in
Zm4 is wL(u+ v).
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Definition 3.1. An m-variables quaternary function F is a function from Zm4
to Z4 which can be identified by its truth table [F (0, · · · , 0), · · · , F (3, · · · , 3)] of
length 4m. Let us define F(Zm4 ,Z4) as the set of all m-variables quaternary func-
tions.

Example 3.2. F : Z2
4 → Z4

(x1, x2) 7→ x1 + x2 mod 4
The truth table is
[F (0, 0), F (0, 1), F (0, 2), F (0, 3), F (1, 0), F (2, 0), F (3, 0), F (1, 1), F (1, 2), F (1, 3),
F (2, 1), F (3, 1), F (2, 2), F (2, 3), F (3, 2), F (3, 3)] i.e
[0, 1, 2, 3, 1, 2, 3, 2, 3, 0, 3, 0, 0, 1, 1, 2].

The support of F is defined by supp(F ) = {u ∈ Zm4 | F (u) 6= 0}. We define
the relative support of F by suppj(F ) = {u ∈ Zm4 | F (u) = j} for all j in Z4 and
ηj(F ) its size. The Hamming weight wH(F ) of F is the size of its support and
the Hamming distance between two m-variables quaternary functions F and G is
dH(F,G) = wH(F −G). The Lee weight wL(F ) of F is η1(F ) + η3(F ) + 2η2(F )
and the Lee distance between two m-variables quaternary functions F and G is
dL(F,G) = wL(F −G). The Walsh transform of an m-variables quaternary func-
tion F is the complex mapping from Zm4 to C defined by WF (u) =

∑
v∈Zm

4
iu·v+F (v)

where u · v denotes the usual inner product in Zm4 (mod 4) . We define W2
F (u) =∑

v∈Zm
4
iu·v (−1)F (v) and W3

F (u) =
∑
v∈Zm

4
iu·v (−i)F (v)

3.2. Quaternary Balancedness and Nonlinearity

Definition 3.3 (Balancedness). Let F ∈ F(Zm4 ,Z4).

F is balanced ⇐⇒ ∀j ∈ Z4, ηj(F ) = 4m−1.

Let us give a balancedness characterisation of quaternary function.

Proposition 3.4. Let F ∈ F(Zm4 ,Z4).

F is balanced ⇐⇒ WF (0) = W2
F (0) = 0.

Proof. By definition we have WF (0) =
∑
v∈Zm

4

iF (v) and W2
F (0) =

∑
v∈Zm

4

(−1)F (v),

then WF (0) = η0(F ) − η2(F ) + i(η1(F ) − η3(f)) and W2
F (0) = η0(F ) − η1(F ) +

η2(F ) − η3(F ). These two equalities give us 3 equations on ηj (0 ≤ j ≤ 3)

by extracting real and imaginary parts. Since
∑
j∈Z4

ηj(F ) = 4m we then obtain

a system of 4 simultaneous equations in 4 unknowns that we solve. This finishes
the proof. �

Similary to the binary case, we define the nonlinearity of quaternary function.

Definition 3.5 (Nonlinearity). Let F ∈ F(Zm4 ,Z4). The nonlinearity of F is
defined by the minimum distance to all affine functions with
nlH4 (F ) = min

G affine
dH(F,G) under the Hamming metric

and with nlL4 (F ) = min
G affine

dL(F,G) under the Lee metric.
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Go on with a nonlinearity characterisation of quaternary function.

Proposition 3.6. Let F ∈ F(Zm4 ,Z4). The nonlinearity of F under the Ham-
ming metric is completely characterised by

nlH4 (F ) = 3 · 4m−1 − 1

4
max

a∈Zm
4 ,b∈Z4

{
2Re(ibWF (a)) + (−1)bW2

F (2a)
}

= 3 · 4m−1 − 1

4
max
a∈Zm

4

{
2 | Re(WF (a)) | +W2

F (2a), 2 | Im(WF (a)) | −W2
F (2a)

}
where Re(z) and Im(z) denote respectively the real and imaginary part of the
complex number z.

Proof. By Definition 3.5, we have

nlL4 (F ) = min
G affine

dH(F,G) = min
G affine

wH(F −G)

Let S be the function in F(Zm4 ,Z4) such that S(u) = F (u) + a · u + b with a in
Zm4 and b in Z4.

nlH4 (F ) = min
a∈Zm

4 ,b∈Z4

{η1(S) + η2(S) + η3(S)}

= 4m − max
a∈Zm

4 ,b∈Z4

η0(S).

Using the decomposition of WS(0), W2
S(0), W3

S(0) and the fact that η0(S)+η1(S)+
η2(S) + η3(S) = 4m we obtain

η0(S) =
1

4

[
4m + WS(0) + W2

S(0) + W3
S(0)

]
=

1

4

4m +
∑
u∈Zm

4

(
iF (u)+a·u+b + (−1)F (u)+a·u+b + (−i)F (u)+a·u+b

)
=

1

4

[
4m + ibWF (a) + (−1)bW2

F (2a) + ibWF (a)
]

=
1

4

[
4m + 2Re(ibWF (a)) + (−1)bW2

F (2a)
]
.

The proof is completed, the second expression of nlH4 (F ) is obvious using properties
of complex numbers. �

Proposition 3.7. Let F ∈ F(Zm4 ,Z4). The nonlinearity of F under the Lee
metric is completely characterised by

nlL4 (F ) = 4m − max
a∈Zm

4 ,b∈Z4

{
Re(ibWF (a))

}
= 4m − max

a∈Zm
4

{| Re(WF (a)) |, | Im(WF (a)) |} .

Proof. By Definition 3.5, we have

nlL4 (F ) = min
G affine

dL(F,G) = min
G affine

wL(F −G).
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Let S be the function in F(Zm4 ,Z4) such that S(u) = F (u) + a · u + b with a in
Zm4 and b in Z4.

nlL4 (F ) = min
a∈Zm

4 ,b∈Z4

{η1(S) + 2η2(S) + η3(S)} .

Using the decomposition of WS(0) and W3
S(0) we have

WS(0) + W3
S(0) = 2(η0(S)− η2(S)).

Moreover

WS(0) + W3
S(0) = 2Re(ibWF (a)).

As
∑
j∈Z4

ηj(S) = 4m, we obtain

η1(S) + 2η2(S) + η3(S) = 4m + η2(S)− η0(S).

That is

nlL4 (F ) = min
a∈Zm

4 ,b∈Z4

{4m + η2(S)− η0(S)}

= 4m − max
a∈Zm

4 ,b∈Z4

{
Re(ibWF (a))

}
which ends the proof of the first expression. The second expression of nlL4 (F ) is
obvious by properties of complex numbers. �

3.3. Quaternary Bent Functions Properties

Definition 3.8 (Quaternary Bent functions). Let F be an m-variables quater-
nary function. F is Bent if and only if |WF (a)| = 2m, for any a ∈ Zm4 .

Remark 3.9. If F is Bent, we have WF (a) = ±2m or WF (a) = ±i2m.

Proof. χ̂F (a) = µ+ iν with (µ, ν) in Z× Z and |χ̂F (a)| = 2m.
Then (2m)2 = µ2+ν2 and the only possible values for µ and ν are (µ, ν) = (±2m, 0)
or (µ, ν) = (0,±2m) : proved by recurrence on m for (µ, ν) in N× N. �

Let us now focus on the maximal nonlinearity of an m-variables quaternary Bent
function F according to the Hamming metric and the Lee metric respectively as
shown in Fig.1.

3 · 4m−1 − 2m−1 3 · 4m−1 − 2m−24m − 2m

nlH4 nlL4

Figure 1. Nonlinearity of Quaternary Bent function .

Theorem 3.10. Let F be a m-variables Bent function.

(1) 3 · 4m−1 − 2m−1 ≤ nlH4 (F ) ≤ 3 · 4m−1 − 2m−2.
(2) nlH4 (F ) = 3 · 4m−1 − 2m−2 if and only if W2

F (2a) = ±2m.
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Proof. (1): Proposition 3.6 gives nlH4 (F ) equal to
3 · 4m−1 − 1

4 sup
a∈Zm

4

{
2 | Re(WF (a)) | +W2

F (2a), 2 | Im(WF (a)) | −W2
F (2a)

}
.

Let us write nlH4 (F ) = 3 · 4m−1 − 1
4y

where y = sup
a∈Zm

4

{
2 | Re(WF (a)) | +W2

F (2a), 2 | Im(WF (a)) | −W2
F (2a)

}
and x = W2

F (2a) =
∑
u∈Zm

4

(i)2a.u(−1)F (u) =
∑
u∈Zm

4

(−1)a.u(−1)F (u).

As F is Bent, we use Remark 3.9 to distinguish two main cases in order to
evaluate y (let c=2m+1):
• WF (a) = ±2m : y = Max {c+ x,−x}
• WF (a) = ±i2m : y = Max {x, c− x}
The geometric representation of y in terms of x (Fig.2) shows that y ranges
between 2m and 2m+1 which completes the proof.

(2): Let nlH4 (F ) = 3 · 4m−1 − 2m−2. If F is Bent and WF (a) real then
2m = sup

a∈Zm
4

{
2m+1 + W2

F (2a),−W2
F (2a)

}
. In this case W2

F (2a) < 0 and

W2
F (2a) is equal to −2m or 2m+1 + W2

F (2a) = 2m that is W2
F (2a) = 2m −

2m+1 = −2m. The case WF (a) is imaginary is similar.

x

y

−2m+1 −2m 2m
2m+1

2m

2m+1

y = −x y = c− x y = xy = −c+ x

Figure 2. y in terms of x.

�

Theorem 3.11. Let F be an m-variables Bent function.

nlL4 (F ) = 4m − 2m.

Proof. Proposition 3.7 gives nlL4 (F ) = 4m − max
a∈Zm

4 ,b∈Z4

{
Re(ibWF (a))

}
.

Using remark 3.9 we have Re(ibWF (a)) = ±2m which finishes the proof. �

4. Galois Rings and Cyclotomic Classes

In this section we give definitions and properties of the Galois ring GR(4,m)
without proofs. We refer the reader to [20] and [8] for further informations about
Galois rings.
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4.1. Galois Rings

As usual, Z4 = Z/4Z = {0, 1, 2, 3} is the ring of integers modulo 4 and F2 the finite
field with two elements. Let µ : Z4 → F2 be the mod-2 reduction map. We extend
µ to Z4[x]→ F2[x] in the natural way. A monic polynomial h(x) in Z4[x] of degree
m is said to be basic irreducible if h2(x) = µ(h(x)) is a monic irreducible primitive
divisor of x2

m−1 − 1 in F2[x] (Hensel lift). The Galois ring R = GR(4,m) of 4m

elements is a Galois extension of order m of Z4 and is isomorphic to the factor
ring Z4[x]/(h(x)) where h(x) is a monic basic irreducible polynomial of degree m
(b-polynomial). Let β be a root of h(x) of order 2m − 1 (β2m−1 − 1 = 0). Then R
is the polynomial ring Z4[β] where {1, β, · · · , βm−1} is a basis of R over Z4. The
Galois ring R is a local ring having a unique maximal ideal D = 2R made up of
the 2m zero divisors. The residue class field K = R/D is isomorphic to the finite
field F2m under the canonical map z 7→ z̄ from R to K. The Teichmüller system
T = {0, 1, β, · · · , β2m−2} is the set of roots of x2

m − x in R and can be viewed as
the set of representatives of K as D = 2R = 2T . Let θ = β̄ be a primitive root
of h2(x) in F2[x], we can identify K with F2m = T = {0, 1, θ, · · · , θ2m−2}. The
multiplicative group R? = R \D of R is a group of order (2m − 1)2m which is the
direct product H× U where H is the cyclic group of order (2m − 1) generated by
β and U is the Abelian group of principal units of R of order 2m that is elements
of the form 1 + 2z0 with z0 in T . There are two canonical ways to represent the
4m elements of R, a multiplicative one and an additive one. In the multiplicative
representation, every element z of R has a unique expansion z = z1 + 2z2 with z1
and z2 in T .

4.2. Cyclotomic Classes

Let R = GR(4,m) be the Galois ring of 4m elements, D = {0, 2, 2β, · · · , 2β2m−2}
the set of zero divisors with | D |= 2m and R? = {z1(1+2z0), z0 ∈ T , z1 ∈ T \{0}}
the multiplicative group of R with | R? |= 2m(2m − 1).

Definition 4.1. Let m be a natural integer and R = GR(4,m) be the Galois
ring of 4m elements and R? its multiplicative group. The 2m cyclotomic classes of
order 2m − 1 of R? are:
Ck = {βj + 2βk, 0 ≤ j ≤ 2m − 2} for any k such that 0 ≤ k ≤ 2m − 2 and
C2m−1 = {βj , 0 ≤ j ≤ 2m − 2}.

5. Construction

Let R = GR(4,m) be the Galois ring of 4m elements and D the set of zero divisors
of R. Let us consider the 2m cyclotomic classes Ck of order 2m − 1 of R? (see
Definition 4.1).
We construct the quaternary function F such that the function F takes the same
value for each element of Ck.

We now compute formally the expressions of WF and W2
F for this constructed

function F . We have
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C2m−1 = {βj , 0 ≤ j ≤ 2m − 2}
with | Ck, 0≤k≤2m−1 |= 2m − 1. And D = {0} ∪ {2βj , 0 ≤ j ≤ 2m − 2}.
Let a in Zm4 .

WF (a) =
∑
v∈D

ia·v+F (v)

︸ ︷︷ ︸
SD(a)

+
∑

0≤k≤2m−2

(∑
v∈Ck

ia·v+F (v)

)
︸ ︷︷ ︸

SCk
(a)

+
∑

v∈C2m−1

ia·v+F (v)

︸ ︷︷ ︸
SC2m−1

(a)

WF (a) = SD(a) +
∑

0≤k≤2m−2

SCk
(a) + SC2m−1

(a) (5.1)

As D = {0, 2, 2β, · · · , 2β2m−2} we have

SD(a) = iF (0) +
∑

0≤k≤2m−2

(−1)a·β
k

iF (2βk) (5.2)

If v ∈ Ck for 0 ≤ k ≤ 2m − 2 then v = βj + 2βk with 0 ≤ j ≤ 2m − 2 and

SCk
(a) = (−1)a·β

k ∑
0≤j≤2m−2

ia·β
j

iF (βj+2βk) (5.3)

If v ∈ C2m−1 then v = βj for 0 ≤ j ≤ 2m − 2 and

SC2m−1
(a) =

∑
0≤j≤2m−2

ia·β
j

iF (βj) (5.4)

In equations (5.2), (5.3) and (5.4), terms of the form (−1)a·β
k

and ia·β
j

show that
WF (a) depends on the b-polynomial used to construct the Galois ring and terms

of the form iF (2βk), iF (βj+2βk) and iF (βj) show that WF (a) depends on the way
that F takes value on the different cosets Ck, 0≤k≤2m−1 and D.
As the construction states that for a given class Ck, the function F takes the same
value, if v = βj + 2βk ∈ Ck then let us define Fk = F (v) = F (βj + 2βk) which
does not depend on j.

WF (a) = SD(a) +
∑

0≤k≤2m−2

(−1)a·β
k

iFk

∑
0≤j≤2m−2

ia·β
j

+ iF2m−1

∑
0≤j≤2m−2

ia·β
j

= SD(a) +

 ∑
0≤j≤2m−2

ia·β
j

 ∑
0≤k≤2m−2

(−1)a·β
k

iFk + iF2m−1


We have now to distinguish the case a ∈ D from the case a 6∈ D.
a ∈ D
Let a = 2βl with 0 ≤ l ≤ 2m − 2 or a = 0.

WF (0) =
∑
v∈D

iF (v) + (2m − 1)
∑

0≤k≤2m−1

iFk (5.5)
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WF (a) =
∑
v∈D

iF (v) +

 ∑
0≤j≤2m−2

(−1)β
l·βj

 ∑
0≤k≤2m−1

iFk

 (5.6)

a 6∈ D
Let a = βs + 2βl in Cl for 0 ≤ l ≤ 2m − 2 and for l = 2m − 1 we have a = βs with
0 ≤ s ≤ 2m − 2.

Furthermore : (−1)a·β
k

= (−1)β
s·βk

and ia·β
j

=

{
iβ

s·βj

(−1)β
l·βj

iβ
s·βj

That is

WF (a) = SD(s) +A(s, l)
(
B(s) + iF2m−1

)
(5.7)

where

SD(s) = iF (0) +
∑

0≤k≤2m−2

(−1)β
s·βk

iF (2βk) (5.8)

A(s, l) =
∑

0≤j≤2m−2

(−1)β
l·βj

iβ
s·βj

(5.9)

B(s) =
∑

0≤k≤2m−2

(−1)β
s·βk

iFk (5.10)

A(s) =
∑

0≤j≤2m−2

iβ
s·βj

(5.11)

We have that SD(s) and B(s) do not depend on the class of a but only on values
of F and A depends only on a but not on values of F . Moreover, we have

W2
F (2a) =

∑
v∈Zm

4

(−1)a.v(−1)F (v) =
∑
v∈D

(−1)F (v) +
∑

0≤k≤2m−1

(∑
v∈Ck

(−1)a·v+F (v)

)
As for the calculation of WF (a), we find that

W2
F (2a) =

∑
v∈D

(−1)F (v) +
∑

0≤k≤2m−1

(−1)Fk

∑
0≤j≤2m−2

(−1)a.β
j

(5.12)

Equations (5.6) and (5.7) give the exact value of WF (a) and (5.12) the exact
value of W2

F (2a) according to the detailed calculation done by equations (5.1)–(5.5)
and (5.8)–(5.11).

Remark 5.1 (Balancedness of F ). The balancedness of F depends on the way
that F takes value on the different cosets Ck and D.

Remark 5.2 (Nonlinearity of F ). The nonlinearity of F under the Hamming
and Lee metric depends on the choice of the b-polynomial and the way that F
takes value according to u belongs to Ck or D.

We now apply these results to a particular configuration in order to obtain a bal-
anced quaternary function with high nonlinearity under the Hamming metric and
Lee metric as shown in Fig.3 and Fig.4 respectively.
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3 · 4m−1 − 2m 3 · 4m−1 − 2m−1 3 · 4m−1 − 2m−2

Constructed functions Bent functions

nlH4

Figure 3. Constructed Quaternary function nonlinearity nlH4 .

4m − 2m+1 4m − 2m

Constructed functions Bent functions

nlL4

Figure 4. Constructed Quaternary function nonlinearity nlL4 .

Proposition 5.3. For k, 0 ≤ k ≤ 2m−2 and for γ ∈ {0, 1, 2, 3}, we define δk =
γ if k ≡ γ (mod 4). With a suitable b-polynomial, we construct an m-variables
quaternary function F as follows: F (βj + 2βk) = F (2βk) = δk and F (0) = 3, for
j, 0 ≤ j ≤ 2m−2. This quaternary function is balanced and its nonlinearity under
the Hamming metric satisfies 3 · 4m−1 − 2m ≤ nlH4 (F ) ≤ 3 · 4m−1 − 2m−1 and its
nonlinearity under the Lee metric satisfies 4m − 2m+1 ≤ nlL4 (F ) ≤ 4m − 2m.

Numerical Results

Nonlinearity under the Hamming metric nlH4 (F ) and the Lee metric nlL4 (F )
(using Propositions 3.6 and 3.7) of constructed balanced quaternary m-variables
functions F with Nbp the number of possible b-polynomials, Nbs the number of
suitable b-polynomials and BH1 = 3 · 4m−1 − 2m, BH2 = 3 · 4m−1 − 2m−1, BL1 =
4m − 2m+1 and BL2 = 4m − 2m.

m Nbp Nbs suitable bpolynomial BH
1 nlH4 (F) BH

2 BL
1 nlL4 (F) BL

2
3 2 2 x3 + 2x2 + x + 3 40 44 44 48 56 56

4 2 2 x4 + 2x2 + 3x + 1 176 180 184 224 232 240

5 6 6 x5 + 3x2 + 2x + 3 736 744 752 960 976 992

6 6 2 x6 + x5 + x4 + 2x2 + 3x + 1 3008 3032 3040 3968 4016 4032

7 18 14 x7 + 2x4 + x + 3 12160 12208 12224 16128 16224 16256

8 16 2 x8 + 3x5 + x3 + 2x2 + 3x + 1 48896 49008 49024 65024 65248 65280

9 48 10 x9 + 2x6 + 2x5 + 3x4 + x3 + 3 196096 196288 196352 261120 261504 261632

6. Derived Boolean Functions

Let R = GR(4,m) be the Galois ring of 4m elements and D the set of zero divisors
of R. Let us consider the m-variables quaternary function F obtained by the
construction which uses the 2m cyclotomic classes of order 2m − 1 of R?. By
taking the binary images of F under the Gray map, we obtain n = 2m-variables
Boolean functions which are balanced and having high nonlinearity.

Definition 6.1. The Gray map φ is defined from Z4 to F2 × F2 with
φ(2q + r) = (q, q ⊕ r). We also define Q from Z4 to F2 with
Q(2q + r) = q.

The Gray map is clearly a bijection from Z4 to F2
2 and its inverse is defined

by φ−1(q, s) = 2q + (q ⊕ s). Identifying Fm2 × Fm2 to F2m
2 , we extend naturally φ
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to Zm4 componentwise by φm(2q0 + r0, · · · , 2qm−1 + rm−1) = (q0, · · · , qn−1, q0 ⊕
r0, · · · , qm−1⊕rm−1) and φ−1m to F2m

2 by φ−1m (q0, · · · , qn−1, s0, · · · , sm−1) = (2q0 +
q0 ⊕ s0, · · · , 2qm−1 + qm−1 ⊕ sm−1).

Definition 6.2. The 2m-variables Boolean function f derived by the Gray map
is

f : F2m
2 → F2

y 7→ Q(F (φ−1m (y)))

Numerical Results :

Nonlinearity nl2(f) = 2n−1 − 1
2 max
a∈Fn

2

|Wf (a)| of obtained balanced n-variables

Boolean functions f with n = 2m derived from the previous constructed balanced
quaternary m-variables functions F compared with known values.

n bnl1 bnl2 nl1 nl2 nl2(f)
6 12 10 22 24 24
8 58 70 94 112 112
10 260 366 390 478 464
12 1124 1700 1600 1952
14 4760 7382 6524 8000

bnl1: Lobanov’s lower bound
bnl2: Carlet - Feng’s ([4]) lower bound

nl1: Best balanced exact Nonlinearity before
nl2: Carlet-Feng’s ([4]) exact Nonlinearity
with optimal algebraic immunity

7. Numerical Example for m = 3 and n = 6

Let consider the Galois ring R = GR(4, 3) of 64 elements built with
the b-polynomial h(x) = x3 + 2x2 + x+ 3.

The 8 cyclotomic classes of order 7 of R? (Def.4.1) are :
C0 : {3, β + 2, β2 + 2, β3 + 2, β4 + 2, β5 + 2, β6 + 2}
C1 : {1 + 2β, 3β, β2 + 2β, β3 + 2β, β4 + 2β, β5 + 2β, β6 + 2β}
C2 : {1 + 2β2, β + 2β2, β2 + 2β2, β3 + 2β2, β4 + 2β2, β5 + 2β2, β6 + 2β2}
C3 : {1 + 2β3, β + 2β3, β2 + 2β3, β3 + 2β3, β4 + 2β3, β5 + 2β3, β6 + 2β3}
C4 : {1 + 2β4, β + 2β4, β2 + 2β4, β3 + 2β4, β4 + 2β4, β5 + 2β4, β6 + 2β4}
C5 : {1 + 2β5, β + 2β5, β2 + 2β5, β3 + 2β5, β4 + 2β5, β5 + 2β5, β6 + 2β5}
C6 : {1 + 2β6, β + 2β6, β2 + 2β6, β3 + 2β6, β4 + 2β6, β5 + 2β6, β6 + 2β6}
C7 : {1, β, β2, β3, β4, β5, β6}

The obtained partitions applying the construction are (Prop. 5.3) :
Let Ej = {u ∈ Z3

4, F (u) = j}, j = 0, 1, 2, 3.
E0 = C0 ∪ C4 ∪ {2, 2β4}
E1 = C1 ∪ C5 ∪ {2β, 2β5}
E2 = C2 ∪ C6 ∪ 2{β2, 2β6}
E3 = C3 ∪ C7 ∪ {2β3, 0}

.

The balanced constructed 3-variables quaternary function F is :
F = 3322312311001200312003111302203200220021331132130321113030122302
with nlH4 (F ) = 44 and nlL4 (F ) = 56.

The balanced derived 6-variables Boolean function f is :
f = 1111101100000100101001000101101100110010110011010110001010011101
with nl2(f) = 24.
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8. Conclusion

This paper presents new results on quaternary cryptographic functions, bringing
out a new approach of functions used in the security of pseudo-random generators
of stream and block ciphers. The main goal of this work, similarly motivated by
the Z4 linearity paper [8], is to present an alternative to the open problem of find-
ing optimal Boolean functions. After defining quaternary functions and describing
their Z4 balancedness and nonlinearity, under the Hamming metric and the Lee
metric, we give results on the maximal nonlinearity of quaternary Bent functions.
Using the algebraic structure of a Galois ring, we present a general construction of
quaternary functions, pointing out necessary trade offs in order to obtain optimal
cryptographic properties. In a natural way, we apply this construction with a par-
ticular configuration to get balanced and high nonlinearity quaternary functions.
Faithful to our main objective, we take the image of our quaternary constructed
functions under the Gray map to obtain balanced and high nonlinearity Boolean
functions. Z4 codes, Galois Rings and Difference Sets over Z4 seems to offer great
investment opportunities and reinforce our motivation to go on with this new kind
of approach.
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Kerdock, Preparata, Goethals and related codes, IEEE Transactions on Information Theory

40 (2) (1994), 301–319.

[9] X. D. Hou: p-ary and q-ary versions of certain results about Bent functions and resilient
functions, Finite Fields and Applications 10 (2004), 566–582.

[10] X. D. Hou: q-ary Bent functions constructed from chain rings, Finite Fields and Applica-
tions 4 (1998), 55–61.

[11] X. D. Hou: Bent functions, partial difference sets and quasi-Frobenius rings, Designs, Codes

and Cryptography 20 (2000), 251–268.
[12] P. V. Kumar, T. Hellesth , A. R. Calderbank, A. R. Hammons: Large Families of Quaternary

Sequences with Low Correlation, IEEE Transactions on Information Theory 42 (2) (1996),

579–592.
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