
Kvaternion 1–2 (2023), 113–136 113

REGRESSION TREES AND RANDOM FORESTS
FOR PREDICTIONS

DUŠAN OBERTA

Abstrakt. Regression trees are widely used in statistics to capture, not always
trivial, relationships between predictors (i.e. independent variables) and a response
variable (i.e. dependent variable). They can be used in a variety of situations where
other statistical tools are not suitable, even in situations where the number of predic-
tors is greater than the number of observations in the set of training data. Random
forests generalize the concept of regression trees to reduce variance and improve sta-
bility of simple regression trees. Apart from the classical regression trees based on
the least squares method, the concept of maximum likelihood with the assumption
of gamma distribution of the response variable is described and derived by the au-
thor. Compared to literature found, slightly different proofs of theorems regarding
pruning of regression trees are offered, as well as a thorough derivation of confidence
intervals for the expected value of the response variable is offered as own work of
the author. Introduction to the concept of random forests is covered in the last part
of the article.

1. Introduction

Nowadays, we are surrounded by huge amounts of data. Considering the fact that
more and more data are obtained every day from numerous human activities, it
is crucial to know how to process the data and model the relationship between,
usually multiple, predictor variables and a response variable properly. Predictor
variable (i.e. predictor), also known as an explanatory variable, is an independent
variable that can be changed by an observer in order to obtain an outcome (i.e.
response variable). Predictors can be either real-valued (called continuous predic-
tors), or they can take only the values from a finite set (in this case, they are
called categorical predictors). A response variable is a dependent variable, which
is influenced by predictors. Our goal is to create a statistical model which best
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captures the relationship, based on some observations made (i.e. a set of training
data).

Imagine we know that a response variable Y is explained by an explanatory
variable X by the relationship Y = α+ βX + ε. Based on a set of n observations
{(x1, y1) , . . . , (xn, yn)} we have done, we want to compute the estimations α̂, β̂ of
the real values of parameters α, β. In real world, each of the observations satisfies
the equation yi = α + βxi + εi (for i = 1, . . . , n), where εi is a random variable
known as a random error, which is the difference between the observed and the
real value of an experiment. Thought this article we assume that ε1, . . . , εn are
independent, meaning that a random error which occurs while making one ob-
servation does not affect any other observations made. This is quite a reasonable
assumption, anyway it is not always fulfilled in real world applications. The case
where the random errors are not independent is not discussed in this article, and
more information regarding this topic can be found in [5]. Also, when deriving
confidence intervals for the expected value of the response variable for regression
trees (see Section 2.6), we assume that ε1, . . . , εn are normally distributed with
zero mean and constant variance. Moreover, it is definitely a reasonable require-
ment that the computed estimations α̂, β̂ are the “best” (in some sense), whatever
the “best” means. Depending on the “best” criterion used, we obtain different sta-
tistical models. The two “best” criterions used for regression trees in this article
are a well-known least squares criterion (see Section 2.3) and a maximum likeli-
hood criterion (see Section 2.7) with the assumption of gamma distribution of the
response variable (for simplicity, the words “assumption of gamma distribution”
will be sometimes omitted, since in this article we will only consider maximum
likelihood estimation with the assumption of gamma distribution of the response
variable).

Probably the best-known tool for making predictions is linear regression. Being
the best-known comes with certain limitations, such as the relationship between
predictors and the expected value of the response variable must be linear. In
order to derive interval estimates of unknown parameters using linear regression,
normal distribution of the response variable is assumed. Generalization of linear
regression is offered by generalized linear models, where the distribution of the
response variable can be any distribution from the so called exponential family,
and the expected value of the response variable is connected to the predictors by
a link function, which is a strictly monotone, differentiable function. Nevertheless,
there are still some limitations concerning this statistical models (e.g. the number
of observations must be at least equal to the number of unknown parameters).
More detailed information regarding linear regression can be found in [1] or [4],
and regarding the generalized linear models, in [2].

Regression trees, described in Section 2, have no limitations concerning the re-
lationship between predictors and the response variable. Also, as mentioned in the
abstract, there are no limitations regarding the number of unknown parameters
and the number of observations, which is not true for both linear regression and
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generalized linear models. They are also known for their simplicity and interpreta-
bility. On the other hand, they might be unstable, meaning that a slightly diffe-
rent data set might result in quite different predictions. Two different approaches
of growing the trees are described, least squares (see Section 2.3) and maximum
likelihood estimation (see Section 2.7), with the latter being own derivation of the
author. Confidence intervals for the expected value of the response variable (assu-
ming a fixed partition of the sample space) are derived thoroughly in Section 2.6.
Also, k-fold cross-validation is shown as a tool for finding optimal values of tuning
parameters (not only) for regression trees. More information regarding regression
trees can be found in [4].

As mentioned in the previous paragraph, regression trees tend to be unstable.
Section 3 provides an introduction to the concept of random forests, which are
built using the basic concepts of bootstrapping, bagging and regression trees in
order to reduce variance of the model when compared to single regression trees
and improve its stability. As in the previous section, confidence intervals for the
expected value of the response variable (assuming a fixed partition of the sample
space) are stated, with a sketch of their derivation. Also specific algorithm for the
practical implementation of random forests is described. More detailed information
regarding random forests can be found in [4] and [8], and regarding the confidence
intervals in [3].

2. Regression Trees

In this chapter, we will introduce some basic concepts regarding regression trees.
Proper mathematical definition of a tree (see Definition 2.1) requires defining some
terms from graph theory. However, for purposes of this article, more intuitive and
vague definitions of the terms and concepts (e.g. Definition 2.2) will be sufficient.

Regression trees are used to model a relationship between predictors and a re-
sponse variable. They are, for example, suitable to use in situations where either
the relationship is too complicated to capture by a simple model, or the num-
ber of independent variables is relatively large when compared to the number of
observations.

2.1. Basic Concepts

Definition 2.1. A tree is an undirected graph, in which any two vertices are
connected by exactly one path.

Definition 2.2. A binary tree T consists of a non-empty set of nodes, such
that each node (called parent node) contains either no subnodes, or precisely two
subnodes (called child nodes), and that there is exactly one node (called the root),
which is not a child node of any other node. Nodes containing no child nodes are
called the leaves or terminal nodes.

Remark. Since we are interested only in binary trees, for simplification, instead
of the term binary tree, we will be using only the term tree (omitting the word
“binary”).
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2.2. Introduction to Regression Trees

The main idea behind regression trees is that by starting with all the data at
the root, we move downwards until a leaf is reached. At each parent node, we
move towards one of its two child nodes depending on the values of predictors –
we select a predictor and its value, which provide the “best” partition (according
to some criterion), and then each data sample, which was originally in the parent
node is moved into the corresponding child node (depending on the selected “best”
predictor and its value). The selected predictor is called a split predictor, its value
is called a split value, and together they are called a split. We stop the splitting
process when some minimal node size (i.e., the minimal number of observations in
a node) is reached.

Let X1, . . . , Xl be continuous predictors and Xl+1, . . . , Xk be categorical pre-
dictors with ml+1, . . . ,mk categories (i.e., Xi ∈ R and Xj ∈ Gj :=

{
g1
j , . . . , g

mj
j

}
,

for i = 1, . . . , l and j = l + 1, . . . , k). Denote the sample space

D := Rl ×
k∏

i=l+1
Gi.

Let {Ri}mi=1 be a finite partition of D, such that for j = 1, . . . ,m, each region Rj
is of the form

Rj =
l∏
i=1

(ai; bi]×
k∏

i=l+1
Si,

where Si is a non-empty subset of Gi and ai, bi ∈ R ∪ {−∞,∞} (in case bi =∞,
the corresponding interval is considered to be open from the right side).

Let Y1, . . . , Yn be random variables, X ∈ Dn an n × k matrix (each of the n
rows of X being an element of D), β1, . . . , βm unknown parameters and ε1, . . . , εn
random variables such that E (εi) = 0 and var (εi) = σ2, for i = 1, . . . , n. Denote
xi := (xi1, . . . , xik)T ∈ D and Xj := (x1j , . . . , xnj)T . We can write X in the form

X =

x11 . . . x1k
. . .

xn1 . . . xnk

 =

xT1
...

xTn

 =
(
X1 . . . Xk

)
.

Now assume a regression model, where only a constant function is fitted in each
of the partition regions, i.e. the corresponding model is of the form

Yi = f (xi) + εi =
m∑
j=1

βjχRj (xi) + εi; i = 1, . . . , n, (2.1)

where χRj is an indicator function of subset Rj of set D, i.e.

χRj (x) :=
{

1, if x ∈ Rj ,
0, else.

Remark. The model defined in (2.1) is typically used for regression trees, when
the partition is done according to the least squares criterion (see Section 2.3).
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When considering the maximum likelihood criterion with the assumption of ga-
mma distribution of the response variable (see Section 2.7), this model is no longer
valid.

Remark. The partition {Ri}mi=1 described in this section simply means, that the
Rl part of the sample space is divided into l-dimensional rectangles for continuous
predictors, and the finite sets corresponding to categorical predictors are divided
into non-empty subsets.

2.3. Growing a Regression Tree

2.3.1. Parameters Estimation. Consider a set of training data

{(x1, y1) , . . . , (xn, yn)} ,

where xi = (xi1, . . . , xik)T , for i = 1, . . . , n. Notice that there are no assumptions
regarding the relationship between n and k. Suppose, in this section, that we
already have a partition of D intom regions R1, . . . , Rm. Assuming that the model
is of the form (2.1), we want to estimate the values of parameters β1, . . . , βm.
Denote fi := f (xi) and consider the criterion of minimizing the residual sum of
squares, i.e. minimizing the expression

RSS := RSS (β1, . . . , βm) =
n∑
i=1

(yi − fi)2 =
n∑
i=1

y2
i − 2

n∑
i=1

yifi +
n∑
i=1

f2
i . (2.2)

Differentiating both sides of (2.2) with respect to βu and setting it to 0, we obtain
∂RSS

∂βu
= · · · = −2

∑
{i|xi∈Ru}

yi + 2 card ({i | xi ∈ Ru})βu = 0, (2.3)

where card (A) denotes the cardinality of set A. Denote Cu := card ({i | xi ∈ Ru}).
Assuming that {i | xi ∈ Ru} is non-empty (i.e., each of the partition regions con-
tains at least one element), (2.3) has a unique solution

β̂u = 1
Cu

∑
{i|xi∈Ru}

yi. (2.4)

Hence β̂u is just the average of yi | xi ∈ Ru. It is an easy exercise to verify that the
Hessian matrix of (2.2) is positive definite, thus the expression (2.4) minimizes
(2.2).

Remark. Details of (2.3), as well as verifying the positive definiteness of the
Hessian matrix of (2.2) can be found in [7].

2.3.2. Finding an Optimal Partition. Now, assuming (2.4) is the least squares
estimator of βu, we need to find an optimal partition of the sample space D.

For a categorical predictor Xj (j ∈ {l + 1, . . . , k}), define the set of all possible
non-empty binary splits as

Bj := {{S;Gj \ S} | S ⊂ Gj ∧ S /∈ {∅;Gj}} .
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Denote Jj the number of all possible non-empty binary splits for a categorical
predictor Xj

Jj := card (Bj) = card (P (Gj) \ {∅;Gj})
2 = 2card(Gj) − 2

2 = 2card(Gj)−1 − 1,

where P (A) denotes the power set of A. Thus we can write Bj as

Bj =
{
Bij
}Jj
i=1 =

{{
Bi;1j ;Bi;2j

}}Jj
i=1

,

where Bij denotes the i-th element of Bj .

Remark. Remember that Gj denotes the set of all values a categorical predictor
Xj can take. Then Bj is a set of unordered tuples, where each of the tuples contains
a non-empty subset of Gj and its complement.

Finding a best binary partition in terms of minimal residual sum of squares is
generally computationally infeasible. Instead, we use a greedy algorithm. Starting
with all the data samples, consider a split predictor Xj (j ∈ {1, . . . , k}). For a split
predictor Xj and split point s define R1 (j, s) and R2 (j, s) as

R1 (j, s) :=
{
{x | xj ≤ s}, if Xj is a continuous predictor,{

x | xj ∈ Bs;1
j

}
, if Xj is a categorical predictor,

(2.5)

R2 (j, s) :=
{
{x | xj > s}, if Xj is a continuous predictor,{

x | xj ∈ Bs;2
j

}
, if Xj is a categorical predictor,

where s ∈ R for continuous variable and s ∈ {1, . . . , Jj} for categorical variable
and xj denotes the j-th element of x.

It is obvious that for every pair (j, s), {R1 (j, s) ;R2 (j, s)} form a partition of
D. For classical regression trees, the index j of split predictor Xj and split point s
are chosen as the solution of the optimization problem

min
j;s

(
min

β1,...,βm

n∑
i=1

(yi − fi)2
)
. (2.6)

For every pair (j, s), the inner minimization of (2.6) is solved by (2.4). If for
continuous predictors we restrict ourselves to the set of values taken by training
data, the outer minimization can be simply solved by iterating through all the
predictors and possible values of s. Finding the best split, we divide the data into
two regions R1 and R2 and repeat the splitting process on both the regions. The
whole process is then repeated again and again on all of the resulting regions, until
the minimal node size (i.e. the number of observations in a node).

Remark. Note that we have found an optimal partition, not the optimal parti-
tion. Due to the fact that we have a finite number of observations, for the parti-
tion obtained in the previous paragraph, there is an (actually uncountable) infinite
number of partitions minimizing (2.5), if for continuous predictors we do not re-
strict ourselves just to the set of values taken by our training data.



REGRESSION TREES AND RANDOM FORESTS FOR PREDICTIONS 119

2.4. Pruning a Regression Tree

A very large tree might overfit the data, while a tree which is too small might
not capture the important structure of the data. In this section, we will describe
how to grow an optimal sized tree. Theorems stated in this section are stated and
proved in [8], nevertheless the proofs of Theorem 2.10 and Theorem 2.11 were
modified and more clarified by the author.

Definition 2.3. A subtree of a tree T is a tree TS with root a node of T , such
that each node of TS is also a node of T . It is denoted as: TS ⊆ T . Then TS is
called a rooted subtree of a tree T , if its root is the root of T .

Remark. If not specified otherwise or being clear from the context, the term
subtree means the maximum possible subtree (in terms of the number of nodes).

Definition 2.4. A branch TB at a non-terminal node t of a tree T is the subtree
rooted at one of its child nodes.

Definition 2.5. The number of leaves of a tree T is called the size of a tree,
i.e.

size (T ) := card ({t | t is a leaf of T}) .
Instead of simply finding a tree with the minimal residual sum of squares, we

need to consider also the size of the tree. For a given tree T and real number α,
define the cost complexity criterion as

Rα (T ) := R (T ) + α size (T ) , (2.7)
where R (T ) is the residual sum of squares as defined in (2.2).

Consider growing a large tree T0, stopping the splitting process only when some
minimum node size (sample size at the specific node) is reached. The idea is to
find for a given α, a subtree T (α) ⊆ T0 minimizing (2.7). Note that for α ≤ 0,
the solution is the full tree T0. We will show that for a given tree T0, there is
a nested sequence of subtrees {Tk}qk=0 (i.e. Tq ⊆ · · · ⊆ T0) and an increasing
sequence of real numbers {αk}qk=1 such that for k = 1, . . . , q − 1, Tk is an optimal
tree for α ∈ [αk;αk+1), Tq is an optimal tree for α ≥ αq and T0 is an optimal
tree for α < α1. We will also provide an algorithm on how to construct the nested
sequence {Tk}qk=0.

Remark. Consider a node t of a tree T . Values Rα (t) , R (t) and size (t) are
defined in the sense of Rα (Tt0) , R (Tt0) and size (Tt0), where Tt0 is a trivial subtree
(consisting only of the root) rooted at the node t. It is easy to see that size (t) = 1.

Remark. For a node t of a tree T , denote Tt the subtree of T rooted at t.
Definition 2.6. Consider a tree T . The reduction function g (t, T ) for a non-

terminal node t of a tree T is defined as

g (t, T ) := R (t)−R (Tt)
size (Tt)− size (t) . (2.8)

Definition 2.7. Pruning of a tree T at a non-terminal node t is to replace Tt
by t.
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Lemma 2.8. Consider a tree T and a non-terminal node t. Then for a given
α ∈ R

g (t, T ) > α if and only if Rα (t) > Rα (Tt) .

Proof. The proof follows directly from definitions (2.7) and (2.8). �

Remark. For a non-terminal node t of a tree T it follows that:

Rα (Tt) =
∑

{TB |TB is a branch at t}

Rα (TB) .

Theorem 2.9. Consider a tree T and α ∈ R. Suppose that we visit all the
nodes of T in the bottom-up order (i.e. starting from the leaves, finishing with the
root, and visiting each node before its parent) and prune at a non-terminal node t
only if

Rα (t) ≤ Rα (T ′t ) , (2.9)
for the current tree T ′. Then the resulting tree is T (α).

Proof. The proof will be done using mathematical induction. Suppose that when
a node t is considered, all the branches at t are optimally pruned. It is obvious
that this is true for the leaves. At node t, we either prune it with the value Rα (t),
or not with the value Rα (T ′t ) if this is strictly smaller. If there is a subtree T ′′t
rooted at t with a smaller value of Rα, it must be non-trivial and there must be
a branch TB with Rα (T ′′B) < Rα (T ′B) and so T ′B is not optimally pruned, which
is a contradiction. Thus after a node t is considered, T ′t is optimally pruned. After
the root is considered, the resulting tree is optimally pruned, hence it is T (α). �

Remark. Theorem 2.9 gives us an algorithm to find T (α) for a single α ∈ R.

Theorem 2.10. Consider a tree T . Denote

α1 := min
{t|t is a non-terminal node of T}

g (t, T ) . (2.10)

The optimally pruned tree is T for α < α1 and T1 := T (α1) is obtained by pruning
at all the nodes t with g (t, T ) = α1. Further, g (t, T1) > α1 for all non-terminal
nodes t of T1.

Proof. Assume α < α1. From (2.10) it follows that g (t, T ) ≥ α1 > α, for all
non-terminal nodes t, thus Rα (t) > Rα (Tt) (see Lemma 2.8). The optimality
of T is then a direct consequence of Theorem 2.9. Now consider α = α1 and
pruning by Theorem 2.9. Since g (t, T ) ≥ α1, then also Rα (t) ≥ Rα (Tt) for all
non-terminal nodes t, hence pruning is only applied at all nodes t with g (t, T ) =
α1 (see condition (2.9)). Thus the second part of the theorem is proved. As a
consequence, whenever the tree is pruned, Rα (T ′s) is unchanged for all the nodes s
of the new tree. Since there were no nodes with Rα1 (t) < Rα1 (Tt) and all the nodes
with Rα1 (t) = Rα1 (Tt) were pruned, all the remaining non-terminal nodes satisfy
Rα1 (t) > Rα1 (T1t), which, according to Lemma 2.8 is equivalent to g (t, T1) > α1
for all non-terminal nodes t of T1. �
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Theorem 2.11. For β > α, T (β) is a subtree of T (α) and is the result of
β-pruning of T (α).

Proof. To show that T (β) is a subtree of T (α), it is sufficient to show that T ′βt
is a subtree of T ′αt for every node t during β-pruning and α-pruning, respectively.
It is obviously true at the leaves. At node t we compare Rα (t) to Rα

(
T ′αt
)
(Rβ (t)

to Rβ
(
T ′βt
)
) and prune the tree if the first is weakly smaller. We must show that if

Rα (t) ≤ Rα
(
T ′αt
)
then Rβ (t) ≤ Rβ

(
T ′βt
)
. Suppose that Rα (t) ≤ Rα

(
T ′αt
)
. During

α-pruning, the current tree T ′αt is optimal at each step, thus also Rα
(
T ′αt
)
≤

Rα
(
T ′βt
)
at each step. Then

Rβ (t) (2.7)= R (t) + β size (t) (2.7)= Rα (t) + (β − α) size (t)

≤ Rα
(
T ′αt
)

+ (β − α) size (t) ≤ Rα
(
T ′βt
)

+ (β − α) size (t)
(2.7)= R

(
T ′βt
)

+ α size
(
T ′βt
)

+ (β − α) size (t)
(2.7)= Rβ

(
T ′βt
)

+ (α− β) size
(
T ′βt
)

+ (β − α) size (t)

= Rβ
(
T ′βt
)
− (β − α)

(
size

(
T ′βt
)
− size (t)

)
β>α& size

(
T ′β
t

)
≥size(t)

≤ Rβ
(
T_t′β

)
.

Thus T (β) is a subtree of T (α). Since T (β) minimizes Rβ (T ′) over all the rooted
subtrees T ′ of T and is a subtree of T (α), it also minimizes Rβ (T ′) over all the
rooted subtrees T ′ of T (α). �

The algorithm from Theorem 2.10 can be applied to the new tree T1 := T (α1) to
find α2 > α1 and T2 := T (α2) and so on until Tq is the trivial tree (i.e. the root of
T0 := T ). From Theorem 2.10 and Theorem 2.11 it follows that for α1 ≤ α < α2,
T (α) = T1 and T (α2) = T2. Repeating the process, α1 < α2 < · · · < αq and
T0 ⊃ T1 ⊃ · · · ⊃ Tq are obtained such that T (α) = Ti for αi ≤ α < αi+1
(i = 1, . . . , q−1). Finally, the full tree T0 is optimal for α < α1 (see Theorem 2.10)
and the trivial tree Tq is optimal for α ≥ αq, which follows from Theorem 2.11.

Algorithm 2.12. The following algorithm can be used to find for a given tree
T , the tree sequence {Tk}qk=0 and {αk}qk=1 as described above:

1. Set k := 0 and T0 := T .
2. Visit all the non-terminal nodes t in bottom-up order, compute g (t, Tk)

using (2.8) and set αk+1 as

αk+1 := min
{t|t is a non-terminal node of Tk}

g (t, Tk) .

3. Visit all the nodes in top-down order and prune whenever g (t, Tk) = αk+1.
4. Set Tk+1 := Tk

′, where T ′k is the tree obtained by αk+1-pruning of Tk.
5. If Tk+1 is a non-trivial tree, set k := k + 1 and go to Step 2.
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2.5. k-Fold Cross-validation

Assume using Algorithm 2.12 to obtain a sequence of nested trees {Tk}qk=0, each
tree being optimal for some α ∈ Iα ⊆ R. Our goal is to choose the best subtree
for our data. We already know that T0 might overfit the data, but the trivial tree
Tq is probably not the right model either. For choosing the best subtree, k-fold
cross-validation can be used (more information regarding this topic can be found
in [4]).

Consider a problem as described in Section 2.3. Denote A the set of training
data, i.e.

A := {(x1, y1) , . . . , (xn, yn)} .
Consider splitting A into k “roughly equal-sized” non-empty subsets A1, . . . , Ak
such that

k⋃
i=1

Ai = A ∧Ai ∩Aj = ∅; i 6= j ∧ max
i,j∈{1,...,k}

{|card (Ai)− card (Aj)|} ≤ 1.

We define an indexing function κ as

κ : {1, . . . , n} → {1, . . . , k} ,
i 7→ j | xi ∈ Aj .

Denote by f̂ j (x) the fitted model using data from the set: A \ Aj . The cross-
validation estimate of prediction error is defined as

CV
(
f̂
)

:= 1
n

n∑
i=1

L
(
yi, f̂

κ(i) (xi)
)
,

where L
(
y, f̂ (x)

)
is the loss function measuring errors between the observed value

y and the predicted value f̂ (x). Typical choices for the loss function are squared
error

L
(
y, f̂ (x)

)
:=
(
y − f̂ (x)

)2
,

and an absolute error
L
(
y, f̂ (x)

)
:=
∣∣y − f̂ (x)

∣∣.
The case k = n is called the leave-one-out cross-validation. In this case κ is an
identity function (i.e. κ (i) = i), and for the i-th observation, the fit is computed
using all the data samples except the i-th.

Consider a set of models f (x, α) indexed by a tuning parameter α. Denote by
f̂p (x, α) the α-th model fit on sample A\Ap. Define the cross-validation estimate
of prediction error for this set of models as

CV
(
f̂ , α

)
:= 1

n

n∑
i=1

L
(
yi, f̂

κ(i) (xi, α)
)
. (2.11)

Our goal is to find parameter α̂ minimizing (2.11). Our final chosen model is then
f
(
x, α̂

)
, which is fitted to all the data.
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2.6. Confidence Intervals for the Expected Value

Consider a problem as described in Section 2.2. Consider a model of the form
(2.1). Assume that ε1, . . . , εn are independent. Then also Y1, . . . , Yn, each Yi being
a function of εi, are independent. Defining an indexing function τ as

τ : D → {1, . . . ,m} ,
x 7→ j | x ∈ Rj ,

(2.12)

we can write (2.1) as
Yi = f (xi) + εi = βτ(xi) + εi. (2.13)

Theorem 2.13. For β̂j (where j = 1, . . . ,m) as defined in (2.4), it follows that

E
(
β̂j
)

= βj , (2.14)

var
(
β̂j
)

= σ2

Cj
. (2.15)

Proof. Firstly we need to compute the expected value and variance of Yi (where
i = 1, . . . , n)

E (Yi)
(2.13)= E

(
βτ(xi) + εi

)
= E

(
βτ(xi)

)
+ E (εi)

E(εi)=0= βτ(xi), (2.16)

var (Yi)
(2.13)= var

(
βτ(xi) + εi

)
= var (εi)

var(εi)=σ2

= σ2. (2.17)

Using (2.4), both the desired equalities can be computed directly

E
(
β̂j
)

= E
(

1
Cj

∑
{i|xi∈Rj}

Yi

)
= 1

Cj

∑
{i|xi∈Rj}

E (Yi)
(2.16)= 1

Cj

∑
{i|xi∈Rj}

βτ(xi)

(2.12)= 1
Cj

∑
{i|xi∈Rj}

βj = 1
Cj

Cjβj = βj ,

var
(
β̂j
)

= var
(

1
Cj

∑
{i|xi∈Rj}

Yi

)
= 1

C2
j

var
( ∑
{i|xi∈Rj}

Yi

)
Y1,...,Yn are independent= 1

C2
j

∑
{i|xi∈Rj}

var (Yi)
(2.17)= 1

C2
j

∑
{i|xi∈Rj}

σ2

= 1
C2
j

Cjσ2 = σ2

Cj
.

�

Remark. According to (2.14), β̂j is an unbiased estimator of βj .

Remark. Denote the residual sum of squares as

Se :=
n∑
i=1

(
Yi − β̂τ(xi)

)2 =
m∑
j=1

∑
{i|xi∈Rj}

(
Yi − β̂j

)2
. (2.18)
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Remark. Further on, define 1 := (1, . . . , 1)T , 0 := (0, . . . , 0)T and denote I as
the identity matrix. If the size of I (1 or 0) is not clear from the context, we will
use Iq (1q or 0q), where the lower index q indicates the matrix (vector) of size q.

Denote Yj :=
(
Yj1 , . . . , YjCj

)T the vector of all Yi’s, for which xi ∈ Rj . From
(2.16), (2.17) and independence of Yi’s, it follows that

E (Yj) = βj1, (2.19)

var (Yj) = σ2I. (2.20)

Using (2.4), it is easy to see that

β̂j = 1
Cj

1TYj . (2.21)

Remark. Notice that
m∑
j=1

Cj = n. (2.22)

Lemma 2.14. Define Mj as

Mj := ICj −
1
Cj

1Cj1TCj . (2.23)

Then Mj is symmetric, idempotent and it follows that

1TCjMj = 0T . (2.24)

Proof. The proof of symmetry is trivial. Idempotence follows from

MjMj = ICj −
2
Cj

1Cj1TCj + 1
C2
j

1Cj1TCj1Cj1TCj

1TCj1Cj=Cj
= ICj −

2
Cj

1Cj1TCj + 1
C2
j

1CjCj1TCj = Mj .

Equation (2.24) can be obtained simply by direct computation. Indeed

1TCjMj = 1TCj −
1
Cj

1TCj1Cj1TCj
1TCj1Cj=Cj

= 1TCj −
1
Cj

Cj1TCj = 0T .

�

Theorem 2.15. Define random variable s2 as

s2 := Se
n−m

, (2.25)

where Se was defined in (2.18). Then s2 is an unbiased estimate of σ2, i.e.

E
(
s2) = σ2. (2.26)



REGRESSION TREES AND RANDOM FORESTS FOR PREDICTIONS 125

Proof. Firstly we compute E (Se) as follows

E (Se)
(2.18)= E

( m∑
j=1

∑
{i|xi∈Rj}

(
Yi − β̂j

)2
)

(2.21)= E
( m∑
j=1

∑
{i|xi∈Rj}

(
Yi −

1
Cj

1TYj

)2
)

=
m∑
j=1

E
((

Yj −
1
Cj

11TYj

)T(
Yj −

1
Cj

11TYj

))
(2.23)=

m∑
j=1

E
(
YT
j MT

j MjYj

) Lemma 2.14=
m∑
j=1

E
(
YT
j MjYj

)
Theorem 4.18 in [1]=

m∑
j=1

(
Tr (Mj var (Yj)) + (E (Yj))T Mj E (Yj)

)
(2.19) & (2.20)=

m∑
j=1

(
Tr
(
Mjσ

2I
)

+ βj1TMjβj1
)

(2.24)=
m∑
j=1

σ2 Tr (Mj)
(2.23)= σ2

m∑
j=1

(
Tr
(

ICj −
1
Cj

1Cj1TCj
))

= σ2
m∑
j=1

(Cj − 1) (2.22)= σ2 (n−m) ,

(2.27)

Dividing (2.27) by (n−m), (2.26) is obtained. �

Further on in this section, assume that for i = 1, . . . , n, εi are normally distri-
buted (i.e., εi ∼ N

(
0, σ2), where the expected value and variance of εi was defined

in Section 2.2). Then also Yi are normally distributed, for i = 1, . . . , n.

Lemma 2.16. Matrix Mj (see (2.23)) is positive semi-definite.

Proof. Multiplying Mj by vector c (of length Cj) from left and right, we obtain

cTMjc
(2.23)= cT c− 1

Cj
cT1Cj1TCjc

1TCj1Cj=Cj
= 1

Cj

(
cT c · 1TCj1Cj −

(
cT1Cj

)2) ≥ 0,

where the last inequality is a well-known Cauchy-Schwarz inequality for RCj

|〈u,v〉|2 ≤ 〈u,u〉 〈v,v〉 ; ∀u,v ∈ RCj ,

where 〈u,v〉 denotes the inner product of vectors u,v (in this case, u = c and
v = 1Cj ). �
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Theorem 2.17. Consider s2 as defined in (2.25). Assume that σ2 > 0 and
Cj ≥ 2, for j = 1, . . . ,m. Then

(n−m) s2

σ2 ∼ χ2
n−m .

Proof. Define random variable Zi as

Zi :=
Yi − βτ(xi)

σ
. (2.28)

It is easy to see that

1
Cj

∑
{i|xi∈Rj}

Zi = 1
Cj

∑
{i|xi∈Rj}

(Yi − βj)
σ

(2.4)= β̂j − βj
σ

. (2.29)

Denote Zj :=
(
Zj1 , . . . , ZjCj

)T the vector of all Zi’s, for which xi ∈ Rj . From
(2.16), (2.17) and Zi being a linear combination of Yi, which is normally dis-
tributed, it follows that Zi ∼ N (0, 1) (for i = 1, . . . , n). Finally, since Yi’s are
independent, Zi’s are also independent, thus Zj ∼ N

(
0Cj , ICj

)
. Furthermore, not

only Zi’s are independent, but Zp and Zq are also independent for p 6= q. Then

(n−m) s2

σ2
(2.25) & (2.18)= 1

σ2

m∑
j=1

∑
{i|xi∈Rj}

(
Yi − β̂j

)2

=
m∑
j=1

∑
{i|xi∈Rj}

(
(Yi − βj)−

(
β̂j − βj

)
σ

)2

(2.28) & (2.29)=
m∑
j=1

∑
{i|xi∈Rj}

(
Zi −

1
Cj

∑
{k|xk∈Rj}

Zk

)2

=
m∑
j=1

(
Zj −

1
Cj

11TZj
)T(

Zj −
1
Cj

11TZj
)

Lemma 2.14=
m∑
j=1

ZTj MjZj .

(2.30)

From Lemma 2.14 and Lemma 2.16, it follows that Mj is symmetric, idempotent,
non-zero and positive semi-definite, hence by Theorem 4.16 in [1] we obtain

ZTj MjZj ∼ χ2
Tr(MjI),

which yields
ZTj MjZj ∼ χ2

Cj−1. (2.31)
Finally, using Theorem 4.13 in [1], independence of Zi’s, (2.22), (2.30) and (2.31),
we obtain

(n−m) s2

σ2 =
m∑
j=1

ZTj MjZj ∼ χ2
n−m.

�
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Theorem 2.18. Assume that σ2 > 0 and Cj ≥ 2, for j = 1, . . . ,m. Then β̂j
and s2 are independent.

Proof. Using (2.30), we can write s2 as

s2 = σ2

n−m

m∑
j=1

ZTj MjZj
(2.28)=

m∑
j=1

(Yj − βj1)T 1
n−m

Mj (Yj − βj1) .

From (2.19), (2.20) and normality of Yi’s it follows that Yj ∼ N
(
βj1, σ2I

)
. Denote

B := 1
Cj 1TCj . Then

B var (Yj)
( 1
n−m

Mj

)
= σ2

Cj (n−m)1T IMj
(2.24)= 0T . (2.32)

Since 1
n−mMj is positive semi-definite (see Lemma 2.16) and using (2.32), we ob-

tain from Theorem 4.19 in [1] that (Yj − βj1)T 1
n−mMj (Yj − βj1) and β̂j = BYj

are independent. Moreover, (Yi − βi1)T 1
n−mMi (Yi − βi1) and β̂j are indepen-

dent for i 6= j, since Yi’s are independent. Finally, since s2 is a sum of m indepen-
dent random variables, where each of them is independent with β̂j , then s2 and
β̂j are also independent. �

Theorem 2.19. Consider x̃ ∈ D. Then

β̂τ(x̃) − βτ(x̃)

s

√
Cτ(x̃) ∼ tn−m,

where tn−m is a Student’s t-distribution with n−m degrees of freedom.

Proof. It follows from Theorem 2.13 and β̂j being normally distributed, that

β̂τ(x̃) ∼ N
(
βτ(x̃),

σ2

Cτ(x̃)

)
,

thus
β̂τ(x̃) − βτ(x̃)

σ

√
Cτ(x̃) ∼ N (0, 1) . (2.33)

Using Theorem 4.22 in [1], (2.33), Theorem 2.17 and Theorem 2.18, we obtain

β̂τ(x̃)−βτ(x̃)
σ

√
Cτ(x̃)√

(n−m)s2

σ2

√
n−m =

β̂τ(x̃) − βτ(x̃)

s

√
Cτ(x̃) ∼ tn−m.

�

Remark. Using Theorem 2.19, we can construct the (1− α)-confidence interval
for E

(
Ỹ
)
, where Ỹ is an independent future observation associated with x̃(

β̂τ(x̃) − tn−m (α) s√
Cτ(x̃)

; β̂τ(x̃) + tn−m (α) s√
Cτ(x̃)

)
,
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where for a random variable T ∼ tp, value tp (α) is defined as
(
1− α

2
)
-quantile,

i.e.
P {|T | ≥ tp (α)} = α. (2.34)

Remark. In Theorem 2.17 and Theorem 2.18, we assumed that Cj ≥ 2, which
is quite reasonable, since we do not want to grow trees with leaves containing only
one observation. Such trees would be probably overfitted and we would need to use
e.g. k-fold cross-validation (see Section 2.5) in order to obtain an optimal subtree.

2.7. Maximum Likelihood Estimation for Gamma Distribution of the
Response Variable

In Section 2.3, for a given partition of D, the values of β1, . . . , βm were estima-
ted by minimizing the residual sum of squares (see (2.2)). If the response variable
has gamma distribution, we might use another approach, maximum likelihood
estimation. Maximum likelihood is described in detail in [2] in the context of ge-
neralized linear models. The crucial difference between least squares and maximum
likelihood is that instead of minimizing a loss function, we estimate the values of
unknown parameters in such way, that amongst all the possible considered models,
the probability of making such observations as we have done, is the greatest.

Let Yi ∼ Γ (α, βi), for i = 1, . . . , n, where, β1, . . . , βn are the parameters of
interest and α > 0 is regarded as a nuisance parameter. Consider k predictors and
denote xi := (xi1, . . . , xik)T ∈ D, for i = 1, . . . , n. Consider a partition of D into
m regions R1, . . . , Rm. We are not interested in parameters β1, . . . , βn directly, but
instead we estimate parameters µ1, . . . , µm, where for j = 1, . . . ,m it follows that

E (Yi) = µj ; ∀i | xi ∈ Rj . (2.35)

According to [1], for Yi ∼ Γ (α, βi) it follows that

E (Yi) = α

βi
. (2.36)

Combining (2.35) and (2.36), we obtain

βi = α

µj
; ∀i | xi ∈ Rj ; j = 1, . . . ,m. (2.37)

Using this notation, our model of interest (compare with (2.1)) is now of the
form

Yi =
m∑
j=1

µj · χRj (xi) + εi; i = 1, . . . , n,

The probability density function fi := fi (yi;βi) of Yi (see [1]) is of the form

fi = exp (−yiβi + α ln βi + (α− 1) ln yi − ln Γ (α)) , (2.38)

where Γ (α) is the gamma function.

Remark. Do not confuse the notation fi with the notation used in Section 2.3.
In this subsection, fi denotes the probability density function of Yi.
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Denote y = (y1, . . . , yn)T and β = (β1, . . . , βn)T . Assuming that Y1, . . . , Yn are
independent, we can write the joint log-likelihood function as

` := ` (y; µ) = ln f (y; µ) Y1,...,Yn are independent= ln
( n∏
i=1

fi

)
=

n∑
i=1

ln fi

(2.38)=
n∑
i=1

ln exp
(
− yiβi + α ln βi + (α− 1) ln yi − ln Γ (α)

)
=

n∑
i=1

(
− yiβi + α ln βi + (α− 1) ln yi − ln Γ (α)

)
= −n ln Γ (α) +

m∑
j=1

∑
{i|xi∈Rj}

(−yiβi + α ln βi + (α− 1) ln yi)

(2.37)= −n ln Γ (α) +
m∑
j=1

∑
{i|xi∈Rj}

(
− yi

α

µj
+ α ln α

µj
+ (α− 1) ln yi

)
.

(2.39)

Our goal is to find the values of µ1, . . . , µm maximizing the expression (2.39).
Differentiating both sides of (2.39) with respect to µu and setting it to 0, we obtain

∂`

∂µu
=

∑
{i|xi∈Ru}

∂

∂µu

(
− yi

α

µu
+ α ln α

µu
+ (α− 1) ln yi

)
=

∑
{i|xi∈Ru}

(
yi
α

µ2
u

+ α
µu
α

(
− α

µ2
u

))
= α

µ2
u

∑
{i|xi∈Ru}

(yi − µu)

= α

µ2
u

( ∑
{i|xi∈Ru}

yi − Cuµu
)

= 0,

(2.40)

where Cu has the same meaning as in Section 2.3. Assuming that {i | xi ∈ Ru} is
non-empty, we obtain a unique solution of (2.40)

µ̂u = 1
Cu

∑
{i|xi∈Ru}

yi . (2.41)

Similarly as in Section 2.3.1, it is an easy exercise to verify that (2.41) maximizes
(2.39), by verifying that the Hessian matrix of (2.39) is negative definite. Details
of these computations can be found in [7].

Notice that (2.41) is formally the same as (2.4). For a given partition of D
and for a future independent observation Ỹ (associated with x̃), the predicted
value, µj | x̃ ∈ Rj , is the same as it was for the least squares estimator derived in
Section 2.3.

The difference between the least squares minimization approach and maximum
likelihood estimation is how the split predictor Xj and split point s are obtained.
Instead of solving (2.6), different optimization problem is considered

max
j;s

(
max

µ1,...,µm
` (y; µ)

)
, (2.42)
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where the meaning of j and s was explained in Section 2.3.2 and µ := (µ1, . . . , µm).
For every pair (j, s), the inner maximization of (2.42) is solved by (2.41). Simi-
larly as in Section 2.3.2, the outer maximization can be simply computed by ite-
rating through all the predictors and possible values of s and choosing the pair
with the greatest value of (2.39) evaluated at the point µ̂ := (µ̂1, . . . , µ̂n)T com-
puted according to (2.41). If we assume α > 0 to be fixed, it is obvious that
maximizing the value of (2.39) evaluated at the point µ̂ for different partitions
{R1 (jq, sq) ;R2 (jq, sq)} (for q being from some finite index set) is the same as
maximizing the expression

m∑
j=1

∑
{i|xi∈Rj}

(
− yi

α

µj
+ α ln α

µj
+ (α− 1) ln yi

)∣∣∣∣
µ=µ̂

= (α− 1)
m∑
j=1

∑
{i|xi∈Rj}

ln yi + nα lnα

− α
m∑
j=1

(
1
µ̂j

∑
{i|xi∈Rj}

yi + Cj ln µ̂j
)

(2.41) & (2.22)= (α− 1)
n∑
i=1

ln yi + nα lnα− nα− α
m∑
j=1

Cj ln µ̂j .

(2.43)

We can see that the first three terms of (2.43) do not depend on the partition of
D, hence for fixed α > 0, the outer maximization of (2.42) is solved by computing
and comparing the values of

`∗ := −
m∑
j=1

Cj ln µ̂j (2.44)

for all the pairs (j, s) and selecting the pair with the greatest value of (2.44).

Remark. The outer maximization of (2.42) can be replaced by minimization of
so called deviance, which provides exactly the same results. Details of this approach
can be found in [7].

3. Random Forests

Regression trees as described in Section 2 have some disadvantages, e.g. instability
or the chance of overfitting the data easily. These issues can be overcome by
random forests, which improve the predictions in terms of variance, by simply
growing multiple regression trees, each of them on a slightly different dataset (as
we will see in this chapter). Firstly, we will briefly introduce the basic concepts of
bootstrap and bagging, which will be important for growing random forests.

3.1. Bootstrapping and Bagging

This section provides only a brief introduction into the bootstrapping and bagging.
More detailed information regarding this topic can be found in [4].
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Consider a set of training data A := {(x1, y1) , . . . , (xn, yn)}. Denote S (A)
some quantity computed from data A (e.g. a prediction at some input point based
on some model). The basic idea of bootstrapping is to randomly draw datasets
with replacement from the set of training data, each sample the same size as the
original one. This is done B times, producing B bootstrapped datasets. Then the
quantity S (·) is computed from each of the B bootstrapped datasets. According
to [4], using bootstrap sampling, we can compute the estimation v̂ar (S (A)) of the
variance of S (A) as

v̂ar (S (A)) = 1
B − 1

B∑
b=1

(
S
(
Ab
)
− S̄

)2
, (3.1)

where Ab denotes the b-th bootstrapped dataset from A and S̄ is defined as

S̄ := 1
B

B∑
b=1

S
(
Ab
)
.

Now we will show how to use bootstrap to improve the prediction itself. Sup-
pose we fit a model f̂ to our training data A and obtain a prediction f̂ (x̃) at
input x̃. Bagging averages this prediction over B bootstrapped samples. For b-th
bootstrapped sample Ab, we fit our model to obtain prediction f̂ b (x̃). The bagging
estimate is defined as

f̂bag (x̃) = 1
B

B∑
b=1

f̂ b (x̃) .

When bagging is applied on regression trees, each bootstrapped tree might con-
tain different splits and might have a different number of leaves. The bagged esti-
mate is the average prediction at x̃ over all the B trees.

Bagging can significantly reduce the variance of unstable procedures like re-
gression trees (see [4]). Applying bagging on regression trees, any simple structure
is lost. Hence interpretability is lost as a result of improving the stability of the
model. Instability of a regression tree means that a small change in the training
data can result in a very different series of splits, hence providing quite different
results.

The key difference between bootstrapping and bagging is that bootstrapping
is a random sampling with replacement, and bagging is performing the bootstrap
multiple times and training an estimator for each of the bootstrapped data and
then aggregating the predictions to make a final prediction. So bootstrapping is
a sampling technique, whereas bagging, also known as bootstrap aggregation, is a
machine learning ensemble technique designed to improve accuracy of statistical
models used for prediction and classification.

3.2. Introduction to Random Forests

In Section 3.1, basic idea of bagging was introduced, where we fit a regression
tree many times to bootstrapped samples of the training data and average the
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results. Random forests technique is a modification of bagging, that builds a large
collection of trees, while reducing correlation amongst them at the same time.

An important feature of trees obtained by bagging is that they are identically
distributed (i.d.), since each tree is built on a data sample randomly drawn with
replacement from the same population. As a result, the expectation and variance
of each tree is the same, so also the bias of bagged trees (i.e., squared distance
between predicted and real values) is unchanged in comparison to the individual
trees. Hence the only improvement can be through variance reduction of bagged
trees when compared to individual trees.

Theorem 3.1. Let X1, . . . , Xn be i.d. random variables (i.e., var (Xi) = σ2,
for i = 1, . . . , n). Assume that cor (Xi, Xj) = ρ ≥ 0, for i 6= j and i, j = 1, . . . , n.
Denote X̄n the average of X := (X1, . . . , Xn)T , i.e.

X̄n := 1
n

n∑
i=1

Xi = 1
n

1TX. (3.2)

Then variance of X̄n is of the form

var
(
X̄n

)
= ρσ2 + 1− ρ

n
σ2. (3.3)

Proof. The variance-covariance matrix of X is of the form

var (X) =


σ2 ρσ2 . . . ρσ2

ρσ2 σ2 . . . ρσ2

...
. . .

ρσ2 ρσ2 . . . σ2

 = ρσ211T + σ2 (1− ρ) I. (3.4)

Using basic properties of variance, we obtain

var
(
X̄n

) (3.2)= var
( 1
n

1TX
)

= 1
n2 var

(
1TX

)
var(AX)=A var(X)AT

= 1
n2 1T var (X) 1

(3.4)= σ2

n2 1T
(
ρ11T + (1− ρ) I

)
1

= σ2

n2

(
ρ1T11T1 + (1− ρ) 1T1

)
1T 1=n= σ2

n2

(
n2ρ+ n (1− ρ)

)
= ρσ2 + 1− ρ

n
σ2.

�

Remark. Notice that if Xi’s are independent (i.e., ρ = 0) in Theorem 3.1, we
obtain var

(
X̄n

)
= 1

nσ
2, which is a well-known property of variance of a mean of

independent, identically distributed (i.i.d.) random variables.

Remark. An important result obtained from Theorem 3.1 is

lim
n→∞

var
(
X̄n

) (3.3)= ρσ2 ≤ σ2 = var (Xi) ; i ∈ N,
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since 0 ≤ ρ ≤ 1.

Knowing that regression trees obtained by bagging are i.d. and assuming that
correlation between the trees is constant and less than 1, we can decrease the
variance of a single regression tree model by growing a sufficiently large number
of trees. The basic idea of random forests is to improve the variance reduction
obtained by bagging by reducing the correlation between trees without increasing
their variance too much. This is achieved by selecting a random subset of m ≤ k
predictors before each split when growing a tree.

Algorithm 3.2. Consider a set of training data A := {(x1, y1) , . . . , (xn, yn)},
where xi = (xi1, . . . , xik)T , for i = 1 . . . , n. Each of the k predictors is either
continuous or categorical. The following algorithm can be used to grow a random
forest.

1. For b = 1 to B:
(a) Draw a bootstrap data sample Ab of size n from original data A.
(b) Grow a regression tree Tb on bootstrapped data Ab, by recursively re-

peating the following steps for each leaf of the tree, until the minimum
node size is reached for all the leaves of the current tree:

(i) Select a random subset of m ≤ k predictors from k original
predictors.

(ii) Select the best split predictor and split point (see Section 2.3 and
Section 2.7, respectively) from the selected m predictors.

(iii) Split the node into two nodes only if the resulting nodes satisfy
the condition of minimum node size, and perform Steps 1(b)(i)
–1(b)(iii) on both of the resulting nodes.

(c) If needed, perform pruning of the tree Tb (see Section 2.4) and use the
k-fold cross-validation (see Section 2.5) to select the best subtree T ′b,
and set Tb := T ′b.

2. Output the ensemble of regression trees {Tb}Bb=1.
3. Prediction at a point x̃ is computed as

T̄ (x̃) := 1
B

B∑
b=1

Tb (x̃) ,

where Tb (x̃) is a prediction at x̃ obtained from b-th tree.

According to [4], recommended minimum node size is 5, and the recommended
value for m in Step 1(b)(i) is

⌊
k
3
⌋
, where bxc is the floor function defined as

bxc := max {m ∈ Z | m ≤ x} .
In practice, the best values for both these parameters depend on the particular
problem and can be considered as tuning parameters.

When growing a regression tree, only the most relevant predictors are selected
for splits, whereas predictors that do not affect Yi’s very much are not selected.
When the number of predictors k is large, but the number of relevant predictors is
relatively very small when compared to k, random forests are not likely to perform
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good for small values of m, since there is small chance of a relevant predictor being
selected at each split. Before each split, the probability of a relevant predictor being
selected follows a hypergeometric distribution.

3.3. Confidence Intervals for the Expected Value

Consider a random sample A from an unknown distribution F . Consider a pa-
rameter of interest θ = t (F ) and its estimate θ̂ = s (A). For b = 1, . . . , B, con-
sider a bootstrap dataset Ab from A and define a bootstrap replication of θ̂ as
θ̂b := s

(
Ab
)
. Then according to [3], the bootstrap estimate ŝ of the standard error

of a statistic θ̂ can be computed as

ŝ =

√√√√ 1
B − 1

B∑
b=1

(
θ̂b − ¯̂

θ
)2
, (3.5)

where ¯̂
θ is defined as

¯̂
θ := 1

B

B∑
b=1

θ̂b.

Remark. Notice the similarity between (3.1) and (3.5). Indeed, the standard
error of a statistic is the estimation of the square root of variance of its sampling
distribution.

Now, consider an independent future observation Ỹ associated with x̃. The
value Tb (x̃) (defined in Step 3 of Algorithm 3.2) can be considered as a bootstrap
replication of E

(
Ỹ
)
, and from (3.5), the estimate ŝ of the standard error of E

(
Ỹ
)

can be computed as

ŝ =

√√√√ 1
B − 1

B∑
b=1

(
Tb (x̃)− T̄ (x̃)

)2
,

where T̄ (x̃) was defined also in Step 3.
Using bootstrap, we can obtain confidence intervals without making any as-

sumptions about data. For each of the B bootstrapped data samples we compute

Zb := Tb (x̃)− T̄ (x̃)
sb

,

where sb is the estimated standard error for the b-th tree and can be computed as
(also compare with (2.15))

sb =

√
s2

Cτ(x̃)
,

where s2 was defined in (2.25). Consider a random variable Z

Z =
T̄ (x̃)− E

(
Ỹ
)

ŝ
.
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According to [3], the (1− α)-quantile of Z can be estimated by the value t̂ (α),
which satisfies the following condition

card
(
{b | Zb ≤ t̂ (α)}

)
B

= α. (3.6)

If Bα is not an integer, then e.g. interpolation can be used to compute t̂ (α).
Finally, using (3.6), the bootstrap-t (1− α)-confidence interval for E

(
Ỹ
)
can be

computed as (
T̄ (x̃)− ŝ t̂

(
1− α

2

)
; T̄ (x̃)− ŝ t̂

(α
2

))
.

Another approach to compute confidence intervals is using the empirical distri-
bution function. Define the empirical (1− α)-quantile t̂e (α) as the value satisfying

card
(
{b | Tb (x̃) ≤ t̂e (α)}

)
B

= α. (3.7)

From (3.7), the empirical (1− α)-confidence interval for E
(
Ỹ
)
can be computed

simply as (
t̂e

(α
2

)
; t̂e
(

1− α

2

))
.

Remark. Notice a slight difference in notations of different quantiles defined in
this article. In (2.34), the value tp (α) denotes

(
1− α

2
)
-quantile, whilst in (3.6) and

(3.7), values Fm,n (α), t̂ (α) and t̂e (α) denote (1− α)-quantiles. This is because of
the symmetry of Student’s t-distribution. Since reader might be used to different
notation, we’d rather emphasize the notation used in this article.

4. Conclusion

Section 2 provides an introduction to the concept of regression trees. Two princi-
ples, least squares and maximum likelihood estimation, of growing the trees are
described and confidence intervals for the expected value were also derived. Intro-
duction to regression trees can be found in [4] and more detailed information can
be found in [8], according to which Section 2.4 was written. Proofs of theorems
in Section 2.4 can also be found in [8], but were slightly modified (especially the
proof of Theorem 2.10), since the author was not completely satisfied by the proofs
provided in [8]. Since we could not find literature covering the topic of confidence
intervals from Section 2.6 to the desired extent, the results in this section were
derived by the author, following the derivation of confidence intervals for the ex-
pected value for linear regression from [1], since the process was quite similar. Also,
for the same reason, the maximum likelihood estimation with the assumption of
gamma distribution of the response variable of regression trees from Section 2.7
was derived by the author, inspired by the process of derivation of generalized
linear models described in [2].

Section 3 deals with random forests. Although this chapter might seem to be
short when compared to the previous one, the opposite is true. Most of the required
apparatus for random forests has been already derived in Section 2, since random
forests use regression trees together with bootstrapping and bagging to reduce
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the variance of single regression trees and provide even more accurate predictions.
Confidence intervals for the expected value were also derived for random forests.
The introduction to random forests (Section 3.1 and Section 3.2 can be found in
[4]). Confidence intervals from Section 3.3 were application of confidence intervals
for bootstrap described in [3].

Application of described statistical models (i.e. regression trees and random
forests) on real data can be found in [7], as well as comparison of those two
models with linear regression and generalized linear models. Due to skewness of
the distribution of our data, we decided to derive a maximum likelihood estimation
for regression trees (see Section 2.7), assuming a response variable with gamma
distribution. This gamma distribution reflects skewness of the distribution of our
data in [7], which was also reflected in the final results, since maximum likelihood
method for regression trees provided better results when compared to ordinary
least squares (see Section 2.3) (and also the best results amongst all the studied
statistical models).
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